
Voice Style Transfer Based on Improved CycleGAN Network 

Ling Lei*, Ruomu Wei, Xinran Wu 
School of Information and Communication Engineering, Communication University of China, Beijing, 

100024, China 

*leiling@cuc.edu.cn 

Keywords: CycleGAN; Voice style transfer; Missing frame filling; Second adversarial losses 

Abstract: Voice style transfer refers to transferring the timbre style of the source speaker's voice to 
the tonal style of the target speaker while keeping the speech content intact. Deep learning technology 
has promoted voice technology's advancement and large-scale application in recent years. Among 
them, the CycleGan network, used for the first time in image transformation, also shows advantages 
in voice style transfer tasks. However, during the speech type conversion of the CycleGan network, 
the generated voice quality is often low, and the effect is not good, so based on this, this paper 
proposes three methods for improvement. In particular, a second adversarial loss is introduced to 
alleviate the problem of over-smoothing in statistical models. The generator and discriminator 
structures are optimized, and the inputs are optimized using 2D-1D-2D convolutional structures and 
PatchGAN, optimizing input feature details and reducing spectral distortion. In addition, auxiliary 
technology Missing Frame Fill (FIF), is applied to make the model pay more attention to the time-
frequency structure of the sound. Then, based on the AISHELL-3 dataset, the traditional CycleGAN 
and the improved CycleGAN network were used to conduct tests on the voice style transfer, 
respectively. The test results show that compared with the traditional CycleGAN network, the 
improved CycleGAN network has achieved significant improvement in the subjective evaluation 
indicators of voice naturalness and similarity scores, as well as the objective indicators MCD and 
MSD, which verifies the effectiveness of the above three improvement measures. 

1. Introduction 
Deep learning technology has recently fueled voice technology's advancement and wide 

application. In digital voice processing, voice style transfer has gradually become an important 
research direction with different needs and scenarios, such as vocal processing for music creation, 
voice generation and conversion for intelligent voice assistants, voiceover processing for movies and 
TV series, and voice desensitization in secret environments.  

Traditional speech-type transmission methods are mainly based on classical audio models, such as 
spectral transforms, transmitter parameter mapping, etc. These methods can perform vocal style 
transitions to some extent but have some limitations, such as unnatural style transition effects, severe 
distortion problems, etc. To solve these problems, researchers focused on deep learning-based 
methods, especially generating adversarial networks (GANs). Kaneko et al. proposed a GAN-based 
method in 2017 to perform voice style transfer through an adversarial relationship between the 
generator and discriminator [6]. To solve the problem of instability in GAN training, researchers have 
also tried to introduce Wasserstein GAN (WGAN) [7]. Zhu et al. first proposed CycleGAN for style 
transfer in the image field [8]. Subsequently, CycleGAN was successfully applied to the voice style 
transfer task, showing high naturalness [9].  

However, the traditional CycleGan network was originally designed for image style transfer, and 
there are certain limitations in the voice style transfer task, such as the low quality of the generated 
voice and poor effect. 

Therefore, this paper proposes a series of efficiency improvement methods based on the 
CycleGAN network for voice style transfer tasks. More specifically, the contributions made in this 
paper are as follows:  
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(1) This paper introduces a second adversarial loss to replace the adversarial loss in the original 
CycleGAN. By introducing an additional discriminator and calculating an additional opponent 
loss, the constraints on the generated sound are enforced, thus minimizing the problem of over-
smoothing in the statistical model and improving the quality of the generated samples.  

(2) The structure of the generator and the discriminator are optimized separately. The generator 
uses a 2D-1D-2D convolution structure to reduce computational complexity and spectral 
distortion of generated samples and improve the quality of voice style transfer. The 
discriminator adopts PatchGAN, which can pay attention to more detailed structural 
information, thereby generating higher-quality output. 

(3) The auxiliary Frame Missing (FIF) self-supervised learning approach is applied to improve the 
general models in the voice style transfer task. FIF technology sets some images to zero value 
in the Mel spectrum diagram, which helps the model pay attention to the time-frequency 
structure of speech during training and improves the model's performance.  

The remainder of this paper is as follows. Section 2 summarizes the research background and 
current status of voice style transfer. In part 3, this paper describes the system's architecture and 
suggests our improvements. Section 4 describes the experimental setup and results comparison. 
Section 5 is the conclusion of this paper. 

2. Related Work 
The evolution of voice style transfer has gradually evolved from the traditional method to the deep 

learning method. The earliest research can be traced back to the 1980s. In 1988, Abe et al.proposed a 
parametric method based on vector quantization and spectrum mapping for voice transfer [1]. 

However, the transition effect is not ideal since the feature space is not continuous. In order to 
solve this problem, Stylianou et al.proposed a method based on the Gaussian mixture model ( GMM ) 
of the sound source spectrum in 1998 [2]. Compared with vector quantization methods, GMM can 
better match voice features. However, GMM itself is not a one-to-one mapping, which leads to the 
problem of over-smoothing and over-matching of the converted voice, limiting the technology's 
development.  

With the development of deep learning, researchers began to try to use complex neural network 
models to model acoustic features. Yao Q et al. proposed a method based on deep neural networks 
(DNNs) [3], Sn, Lifa et al. used a Short-Term Long-Term Memory (LSTM) network for speech 
conversion [4], Sato et al. used the high-speed road network for voice conversion [5]. Although these 
methods have improved regarding naturalness and intelligibility of transitions, the problem of over-
smoothing still leads to insufficient naturalness of voice. 

As a deep learning model with power generation capabilities, the introduction of GAN has greatly 
improved the quality and fidelity of the generated speech. As a deep learning network architecture, 
the GAN is continuously optimized through the interaction between the generator and the 
discriminator in voice style transfer and can generate dummy data similar to the real data. Compared 
with traditional methods, GAN-based voice style transfer technology has many advantages, such as 
no manual data labeling, a more natural conversion effect, and higher conversion efficiency [11].   

Kaneko et al. proposed a GAN-based method in 2017 to perform voice style transfer through an 
adversarial relationship between the generator and discriminator [6]. The generator is responsible for 
converting the source voice to the target type, while the discriminator evaluates the difference 
between the generated voice and the actual target type voice. The generator is responsible for 
converting the source voice to the target type, while the discriminator evaluates the difference 
between the generated voice and the actual target type voice. In addition, in order to solve the 
instability problem in GAN training, researchers also tried to introduce WGAN [7]. WGAN improves 
the training stability by using Wasserstein distance instead of the loss function of traditional GAN. 

However, traditional GANs require consistent training data, which is difficult to meet in many 
situations. To solve this problem, CycleGAN (Cycular Consistency Adversarial Network) came into 
being. Unlike traditional GANs, CycleGAN does not require concatenated tuples and learns the 
mapping relationship between the two types through a one-way transformation. By using cycle 
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consistency constraints, CycleGAN ensures that the output is as consistent as possible with the 
original input during the reverse transition, making the transitions more natural. 

In recent years, CycleGAN has become another important technical direction, which solves the 
problem of unsupervised image-to-image conversion through cycle consistency loss. Zhu et al. first 
proposed CycleGAN for style transfer in the image field [8]. Then, CycleGAN was successfully 
applied to the voice style transfer task, showing high quality and natural transition [9].  

3. Proposed Methods 
3.1 Second Adversarial Losses 

In traditional CycleGAN models, the adversarial loss is used to ensure that the generated sound 
matches the target pattern [12]. However, the loop consistency loss uses the L1 norm, which can lead 
to over-smoothing of the generated audio. A second adversarial loss can be introduced to alleviate the 
problem of over-smoothing in statistical models to solve this problem.  

The implementation details of the second adversarial loss strategy include the introduction of an 
additional discriminator and the calculation of additional adversarial losses [13].  First, the additional 
D'X and D'Y discriminators for each cycle need to be introduced in the second adversarial loss. These 
discriminators work with the original DX and DY discriminators but are responsible for the loop-
switched audio functions. This additional adversarial loss is used along with the original adversarial 
loss to apply the adversarial loss to the audio function twice per cycle.  

The formula is as follows: (take D'X as an example, D'Y is the same) 

                         (1) 
By introducing a second adversarial loss, the model can better handle the problem of over-

smoothing [14]. This method adds an additional adversarial loss to the cycle consistency loss to 
improve the quality of the generated samples to be closer to real samples, which helps improve the 
performance of speech conversion tasks. 

3.2 Improved Generator: 2D-1D-2D Structure 
The generator first converts the input 2D Mel spectrogram into 1D features through convolution 

operation to improve the 2D-1D-2D structure [15] [16]. The process uses reshaping layers, 1x1 
convolution layers, and instance normalization layers to reduce computational complexity while 
preserving the time-frequency information of the input features. The generator then processes these 
1D features using a 1D residual convolution network to better capture long-term dependencies in the 
Mel spectrogram [17]. After a 1D convolutional network processes the features, the generator 
recreates the 1D features in a 2D Mel spectrogram using an unwrapping layer to complete the voice-
style transmission task. This improved generator structure can improve voice style transfer quality 
and reduce generated samples' spectral distortion. The schematic diagram of the improved generator 
(2D-1D-2D) is shown in Figure 1. 

 

Figure 1 Schematic diagram of the improved generator (2D-1D-2D) 
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3.3 Improved Discriminator: PatchGAN 
PatchGAN is a discriminator that targets local regions of an image or feature map. Unlike 

traditional full image discriminator tools (such as FullGAN), PatchGAN aims to evaluate whether a 
local input area belongs to the target category or type. During training, the PatchGAN discriminator 
evaluates multiple local regions of input features to better capture finer-grained feature differences. 
This locality encourages the generator to produce features that align with the target's style. In 
comparison, FullGAN focuses on global consistency while ignoring local structural information. The 
schematic diagram of the improved discriminator (PatchGAN) is shown in Figure 2 as follows. 

 
Figure 2 Schematic diagram of the improved discriminator (PatchGAN) 

This feature of PatchGAN gives it outstanding performance in styling, image generation, and other 
general tasks, as it can pay attention to more detailed structural information, resulting in high output 
quality. Overall, compared with FullGAN, the PatchGAN discriminator improves the performance 
and output quality of the generalized models by focusing on the local structure of the input feature 
map.   

3.4 The Application of Filled Frame Technology 
FIF (Frame Inpainting and Filling) technique is a self-monitoring learning method that improves 

general patterns in voice type transfer tasks by filling in missing frames to capture time-frequency 
structure [18] [19]. The principle of the FIF technique is to artificially create missing frames by 
including a temporary mask in the source mel-spectrogram, which corrects certain frames at zero 
values. The generator is then trained to fill in those missing frames instead of directly transferring the 
type. This approach encourages the transmitter to focus on the characteristics of the time-frequency 
structure, thereby improving the generation quality [20].   

The working procedure of the FIF technique is as follows: set a source mel spectrum x, first 
generate a time mask m of the same size as x, where some regions have zero values (representing the 
missing frames) and other regions with a value of 1. Subsequently, the m mask is applied to x, 
producing a mel spectrum xˆ with missing frames. The Gmask generator takes xˆ and m as input and 
uses m as conditional information to fill in the missing frames, thus generating a y′-filled target mel 
spectrum. An adversarial loss is used for the constraints to ensure that y' lies in the target domain Y. 
The schematic diagram of the filling frame technology is shown in Figure 3. 

Since there is no parallel data to monitor, the FIF evaluates the stuffing effect due to loss of cycle 
consistency. Specifically, the Gmask inverse generator reconstructs x'' from y', and the cycle 
consistency loss between the original Mel frequency spectrum x and the reconstructed Mel frequency 
spectrum x ' is calculated. The generator must extract useful information from the surrounding frames 
to optimize this loss and fill in the missing frames. This generalization facilitates self-supervised 
learning of time-frequency structures in mel-spectrograms. Similar effects can be seen in other areas, 
such as drawing images and filling text.   

The main advantage of FIF technology is that it does not require additional data or pre-trained 
models (such as linguistic information) and can be used as a self-supervised learning method to 
improve the performance of the style transformation model. And it is enough to double the number 
of input channels to receive m and xˆ without significantly increasing the model's parameters.  
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Figure 3 Schematic diagram of filling frame technology 

4. Experiments 
4.1 Experimental Environment 

In this study, to use CycleGAN for voice style transfer, the test environment is configured as 
follows: The operating system is 64-bit Ubuntu 16.04, the GPU model is NVIDIA RTX 2080 Ti, the 
display memory is 11 GB, and the memory is 40 GB. In order to be compatible with the pyworld 
library, the deep learning framework uses the relatively basic PyTorch 1.1, corresponding to Python 
version 3.7. Using such hardware configuration and software environment, the GPU can be fully 
utilized to accelerate many matrices and convolution operations during training to gain speed and 
higher training performance in experience [21].  

4.2 Dataset Selection 
AISHELL-3 is a large-scale, high-fidelity multi-speaker Mandarin voice database suitable for 

training various voice systems. After many tests and comparisons, considering the variety of speaker 
properties, sound fidelity, etc., this paper finally chooses to use the AISHELL-3 database for voice 
style transfer training. In short, AISHELL-3 has three advantages: (1) High audio fidelity, AISHELL-
3 data sets are recorded with a high-fidelity microphone (44.1kHz, 16bit) to ensure sound quality. (2) 
Larger data scale, the AISHELL-3 dataset contains about 85 hours, and 88035 records, helping to 
train a more general voice style transfer model. (3) More diverse speaker attributes, the AISHELL-3 
dataset includes 176 female speakers and 42 male speakers, making it more suitable for studying 
voice style transfer between different genders.   

From the AISHELL3 database, two female voices, SSB0033 and SSB0145, and two male voices, 
SSB1863 and SSB0316, were selected and combined into a group for training. Specifically, it contains 
four transformations in which males and females are combined: female to female, male to male, 
female to male, and male to female. Among them, there are 500 audios for each timbre, of which 480 
are selected as a learning set, and 20 are reserved for testing and experimentation.   

4.3 Data Processing 
When preprocessing the source audio data, the audio is down-sampled, reducing the sampling rate 

to 22.05 kHz. Simultaneously, a WORLD analyzer was used to extract 34 Mel cepstrum coefficients 
(MCEPs), fundamental logarithmic frequency (log F0), and non-periodic indicators (APs) every 5 ms 
[10]. These features are extracted every 5ms, which can make the extracted features reflect rapid 
changes in the voice signal while preserving feature resolution. This is important for capturing 
insights and creating natural voices in voice transfer tasks [22]. Also, to increase the randomness of 
the training data, a chunk (128 frames) is cut from a randomly selected sentence instead of using the 
whole sentence directly.  

76



4.4 Hyper Parameter 
The training hyperparameters are defined in the following table: num_epochs represents the total 

number of training epochs, defining the training time of the model. batch_size represents the number 
of samples contained in each batch. lr represents the learning rate, which is the step size used by the 
optimizer when updating the model weight [23]. decay_after represents the specified number of 
epochs after which the learning rate decays so that the model weights can be updated more gently in 
the later stages of training. num_frames refers to the number of frames per training sample, which 
will determine the length of the audio clips imported into the model. Table 1 shows the setting of 
hyperparameters. 

Table 1 Setting of hyperparameters 

num_epochs batch_size lr decay_after num_frame 
2e4 5 5e-4 1e4 64 

4.5 Comparison of Results 

 
Figure 4 MOS column comparison diagram 

 
Figure 5 SIM column contrast diagram 

Observe the conversion effect between the same gender. The MOS score of female-to-female 
conversion increased from 2.12 to 3.42, and the SIM score increased from 1.98 to 3.51. The MOS 
score of male-to-male increased from 2.26 to 3.67, and the SIM score increased from 2.01 to 3.43. 
These data show that the improved model significantly improves the naturalness and similarity of 
voices in same-sex transfer situations, making the converted voice closer to the human voice 
performance. The MOS column comparison diagram and SIM column contrast diagram are shown in 
Figure 4 and Figure 5, respectively. 

Observe the transition effect between the opposite sexes. Male to female MOS score increased 
from 1.37 to 2.82, and the SIM score increased from 1.56 to 2.91. The MOS score of female-to-male 
increased from 1.49 to 2.94, and the SIM score increased from 1.52 to 3.12. These results illustrate 
that the improved model also significantly improves opposite-sex conversion situations.  

Although the performance of these two transformations is still slightly lower than the same-sex 
transfer in terms of naturalness and voice similarity, there has been a significant improvement, laying 
the basis for further improving the performance of these transformations. Table 2 and Table 3 show 
the MCD comparison(DB) and MSD Comparison ( DB ), respectively. 
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Table 2 MCD comparison (DB) 

NO. Improvement measures Same-sex 
transfer 

Transgender 
transfer 

  LOSS Generator and 
Discriminator 

Missing 
frame 

Female 
to 

female 

Female 
to male 

Male to 
female 

Female 
to male 

  Tradition CycleGAN(BASELINE)     

0 Single step 2D&FULLGAN Prevent 7.32 6.97 7.72 7.39 
  Improved CycleGAN     

1 Two-step 2D&FULLGAN Prevent 6.98 6.56 7.47 7.14 
2 Single step 2D-1D-

2D&PatchGAN 
Prevent 6.61 6.44 7.25 7.06 

3 Single step 2D&FULLGAN Use 6.88 6.34 7.35 7.23 
4 Two-step 2D-1D-

2D&PatchGAN 
Use 6.47 6.19 6.91 6.98 

Table 3 MSD Comparison ( DB ) 

NO. Improvement measures Same-sex 
transfer 

Transgender 
transfer 

  LOSS Generator and 
Discriminator 

Missing 
frame 

Female 
to 

female 

Female 
to male 

Male to 
female 

Female 
to male 

  Tradition CycleGAN(BASELINE)     

0 Single 
step 

2D&FULLGAN Prevent 2.21 2.47 2.71 2.62 

  Improved CycleGAN     

1 Two-step 2D&FULLGAN Prevent 1.65 1.57 1.82 1.94 
2 Single 

step 
2D-1D-

2D&PatchGAN 
Prevent 1.55 1.62 1.79 1.81 

3 Single 
step 

2D&FULLGAN Use 1.39 1.48 1.63 1.70 

4 Two-step 2D-1D-
2D&PatchGAN 

Use 1.25 1.33 1.49 1.56 

After implementing various improvement measures, we obtained the objective results of the 
indicator evaluation presented in the table above.  

Introducing Second Adversarial Losses: when comparing the traditional CycleGAN (No.0) with 
the improved CycleGAN (No.1), resulting in a second loss of head-to-head, it can be seen that the 
MCD and MSD are significantly reduced. This shows that second adversarial losses can improve the 
quality of the style transfer, making the converted audio closer to the target sound in terms of spectral 
characteristics and modulation characteristics.  

Using 2D-1D-2D constructs and PatchGAN discriminator: comparing the traditional CycleGAN 
(No.0) with CycleGAN (No. 2) introduces an improved generator and discriminator, using 2D-1D-
2D and the PatchGAN discriminator also significantly reduced MCD and MSD, which shows that 
the method can more effectively capture the time-frequency structure of audio, thereby improving the 
effect of style transfer. 

Introduction of FIF technology (Missing Frame Processing): Compared to the traditional 
CycleGAN (No. 0) and CycleGAN (No.3) that introduced FIF technology, the use of FIF technology 
can further reduce MCD and MSD, which shows that the FIF technique helps to understand the time-
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frequency structure of the audio and can better retain the structure of the original audio during the 
transition.   

5. Conclusions 
This paper proposes three improvement methods based on the CycleGAN network for the voice 

style transfer task and tests them on the AISHELL-3 dataset. Introducing a second adversarial loss 
for both same-gender and cross-gender transfers, using 2D-1D-2D structure and PatchGAN 
discriminator, and using FIF technology can effectively improve the effect of style transfer. Among 
all the improvement measures, when the three methods are used in combination, MCD and MSD both 
reach the lowest value and achieve the best voice style transfer effect. The experimental results show 
that the proposed improved method has significantly improved subjective and objective evaluation 
indicators compared with the traditional CycleGAN model. In the future, we will try to use other 
audio features for style transfer and introduce more advanced Generative Adversarial Network (GAN) 
technology to improve the naturalness of the generated sound and system performance.  
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